GLI Method Summary

Fluorine by Pyrohydrolysis and Ion-Selective Electrode

Analyte: F

Preparation:
The fluorine is separated from the sample by pyrohydrolysis in a quartz tube with a stream of wet oxygen at a temperature of 1100°C. A V$_2$O$_5$ accelerator is mixed with the sample to be pyrohydrolyzed. The fluorine is volatilized as hydrofluoric acid, absorbed in dilute caustic and measure with ion-selective electrode.

Instrument:
Orion Fluoride Electrode (90-01); Fisher Acumet Specific Ion Meter MP825; Thermolyne 21100 Tube Furnace

Calibration:
<table>
<thead>
<tr>
<th>Calibration Standards</th>
<th>Concentration Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-Range Standard</td>
<td>0.2–2.0 µg F/mL (NaF solution)</td>
</tr>
<tr>
<td>Normal-Range Standard</td>
<td>0.5–10 µg F/mL</td>
</tr>
<tr>
<td>High-Range Standard</td>
<td>10–100µg F/mL</td>
</tr>
</tbody>
</table>

Enter each standard as direct concentration; automatic temperature compensation

Control:
NIST Phosphate rock (3.2% F)

Determination:
Direct readout

Detection Limit:
0.002%

Interferences:
Not known

Calculations:
\[
\%F = \frac{\left(\frac{\text{sample, } \mu g/\text{mL}}{\text{blank, } \mu g/\text{mL}} \right) \left(\text{prep volume, mL} \right)}{\left(10 \right) \left(\text{sample wt, mg} \right)}
\]

\[
\mu g/ g, \text{ ppm F} = \frac{\left(\frac{\text{sample, } \mu g/\text{mL}}{\text{blank, } \mu g/\text{mL}} \right) \left(\text{prep volume, mL} \right)}{\left(\text{sample wt, g} \right)}
\]

Precision and Accuracy:

<table>
<thead>
<tr>
<th>RSD</th>
<th>RE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.38%</td>
<td>0.63%</td>
</tr>
</tbody>
</table>

Reference
ASTM C-169-00

Other GLI Procedures
E9 Series